人教版小学数学五年级下册第一单元观察物体(三) 爬坡题
第一单元 观察物体(三)【例1】从上面看是,从左面看是。搭这样的立体图形,最多用()个小立体方块。A 4 B5 C6 D 7解析:本题考查的知识点是从不同的方向观察几何体,考查了学生的空间表象能力,解答时要用到分析、推理和排除法。方法提示:推理法和排除法是解答此类问题常用的方法。根据从上面看到的图形可得:这个图形只有一行,有3个正方体;从左面看到的图形可得:这个图形一共有2层;要使小正方体个数最多,则上层需要有3个正方体;最多需要:3+3=6(个)就可以搭成这样一个立体图形。解答:C【例2】如图所示,要使从上面看到的图形不变:(1)如果是5个小正方体,可以怎样摆?(2)如果有6个小正方体,可以有几种不同的摆法?(3)最少需要几个小正方体?解析:本题考查的知识点是用数学的“分类讨论思想”解答小正方体的拼摆问题。解答时,由上面看到的图形得出:几何体的最下面一层有3列,最右边一列有2行。(1)如果是5个小正方体,可以把第5个摆放在第二层的任何一个小正方体的上面;(2)如果有6个小正方体,可以有10种不同的摆法:摆成2层的,有6种摆法,摆成3层,有4种摆法。(3)根据图形分析,几何体至少是1层,因此最少需要4个小正方体。解答:(1)如果是5个小正方体,可以把第5个摆放在第二层的任何一个小正方体的上面。(2)如图2,如果有6个小正方体,可以有10种不同的摆法;摆成2层的,有6种摆法,摆成3层,有4种摆法。分类讨论思想:分成若干类,转化成若干个小问题来解决(3)根据从上面看图分析,几何体至少是1层,因此最少需要4个小正方体。【例3】用4个同样大小的正方体,摆成下面下面的长方体,按下面的要求再添加一个同样大小的正方体,各有多少种不同的摆法?(1)从侧面看到的是,共有()种不同的摆法。(2)从侧面看到的是,共有( )种不同摆法。(3)从上面看到的是,共有()种摆法。解析:本题考查的知识点是用“分类讨论思想”解答小正方体的拼摆问题。解答时,要根据要求,分情况讨论各有几种不同的摆法。(1)从侧面看到的形状是,也就是说第5个小正方体可以摆在第一横行每个小正方体的后面,这样就有4种不同的摆法。(2)从侧面看到的是,也就说摆成的小正方体有2层,这样第5个小正方体可以摆在第一层任意一个小正方体的上面,这样也有4种不同的摆法。(3)从上面看到的形状是,也就是说这样的位置摆放是固定的,因此只有一种摆法。解答:(1)4(2)4(3)1【例4】一个物体是由棱长为1的正方体模型堆砌而成,从不同方向看到的形状图如下图。该物体的体积有几个小正方体组成的?解析:本题考查的知识点是综合利用“分析综合法”根据从三个方向观察到的图形来确定和判断组成几何体的小正方体的个数问题。从正面、左面看到的最多层数,就是该物体的层数共两层,下层6个,分两行,上、下行各3个,上层1个,位于下层前排左面一个小正方体之上,这样一共有6+1=7(个)小正方体。解答:7个【例5】红红和亮亮分别用5个同样的小正方体摆成立体图形,从右面看到的图形是 ,从正面看到的图形是,你能判断出他们谁摆的正确吗?红红 亮亮解析:本题考查的知识点是用对应法分析和判断搭成的物体的形状。我们先看红红搭的,从右能看到4个正方形,分两列,左列1个,右列3个,下齐;从正面看到4个正方形,分两列,左列3个,右列1个,下齐。再看亮亮的,从右面能看到4个正方形,分两列,左列3个,右列1个,下齐,从正面看到的形状与从右面看到的形状相同,由此即可判定谁搭的正确。解答:红红拼摆的正确