人教版九年级下册数学28.1第2课时 余弦和正切 教案.docx
第二十八章 锐角三角函数28.1锐角三角函数第2课时余弦 正切一、教学目标1. 了解直角三角形中一个锐角固定,它的邻边与斜边,对边与邻边的比值也固定的事实。2. 理解余弦与正切的概念。3. 熟练运用锐角三角函数的概念进行有关的计算。二、教学重难点重点:理解并掌握余弦与正切的概念。难点:熟练运用锐角三角函数的概念进行有关的计算。 三、教学过程【新课导入】问题引入:BDCEAAB斜边c邻边bC对边a如图,在RTABC中,C=90,当A固定时,A的邻边与斜边的比,A的对边与邻边之比会发生什么变化?结论:在一个直角三角形中,当A固定时,A的对边与斜边比,A的对边与邻边比都是确定。 【新知探究】(一)引入余弦,正切的概念余弦: 在直角三角形中, A的邻边与斜边的比叫做A的余弦(cosine)。AB斜边c邻边bC对边a正切:在直角三角形中,A的对边与邻边的比叫做A的正切(tangent)。(二)例题讲解:AB610C例2:如图,在RTABC中,C=90,AB=10,BC=6,求sinA,cosA,tanA的值。解:由勾股定理可得:ABC练习:如图,在RTABC中,C=90,求sinA和cosA【课堂小结】1.余弦:2.正切: 【课堂训练】ABC1.如图中,在RTABC中,C=90,c=2, ,则a=_______,b=__1____。ABC2.如图,ABC在55的网格中,则tanABC=_________3.如图,在RTABC中,C=90,AB=3,BC=2,则下列三角函数表示正确的是( A )BACA B C D xyAO(3,1)4.如图,在平面直角坐标系中,直线OA过点(3,1),则cos的值是( B )A B C D 3EAOBDC5.如图,边长为1的小正方形构成的网格中,半径为1的O在格点上,则AED的正切值为______