人教版九上数学第23章第33课时 图形的旋转(2):性质的综合应用 课件.pptx
第二十三章旋转,图形的旋转(2):性质的综合应用,旋转的性质: (1)对应点到旋转中心的距离__________; (2)对应点与旋转中心所连线段的夹角等于旋转角,旋转角________; (3)旋转前、后的图形__________.,相等,相等,全等,如图,将ABC绕点A按逆时针方向旋转40到ABC的位置,连接CC,若CCAB,则BAC的度数是() A55B60 C65D70,D,如图,在ABC纸片中,ABC90,将ABC绕点B顺时针旋转90得到ABC,连接CC,若ACC15,则A的度数为() A25B30 C35D40,B,如图,P是等边ABC内一点,BMC是由BPA旋转所得,则PBM________.,60,如图,已知ACBC,垂足为C,AC4,BC3 ,将线段AC绕点A按逆时针方向旋转60得到线段AD,连接DC,DB.则: (1)线段DC_______; (2)线段DB______.,4,如图,在RtABC中,ABAC6,将ABC绕点C逆时针旋转15得到MNC,则阴影部分的面积等于_______.,如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30得到正方形ABCD,则它们的公共部分的面积等于(),B,一级 1如图,将ABC绕点A逆时针旋转90得到ADE,点C和点E是对应点,若AB1,则BD______.,2如图,将ABC绕点C按逆时针方向旋转得到DEC,使D点落在AB上,若CAB66,则BCE的度数是__________.,48,二级 3如图,将直角三角形ABC绕直角顶点C顺时针旋转90得到三角形A1B1C,连接AA1,若125,则CA1B1__________.,20,4如图,在等边ABC中,AB6,点D是BC的中点,将ABD绕点A旋转后得到ACE,那么线段DE的长度为_______.,三级 5(2021秋海阳市期末)如图,ABC为等腰直角三角形,ACB90,点D为AB边上一点,连接CD,将CD绕点C逆时针旋转90到CE,连接DE,BE.若AD3,BD7,求CDE的面积 解:将CD绕点C逆时针旋转90到CE,CDCE,DCE90, ABC为等腰直角三角形,ACBC,ACB90, ACDBCE,AABC45, ACDBCE(SAS),CBEA45,BEAD3, ABEABCCBE90,,6如图,把边长为3的正方形ABCD绕点A逆时针旋转45得到正方形AEFH,边DC与EF交于点G,求四边形AEGD的周长 解:四边形AEFH是正方形, GEC90. 四边形ABCD是正方形, GCE45. GECE.,本部分内容讲解结束,按ESC键退出全屏播放