欢迎来到叮当云教育! | 帮助中心 教学备课就来叮当文库!

叮当云教育

换一换
首页 叮当云教育 > 资源分类 > DOC文档下载
 

北师大版八年级上册数学第一章《勾股定理》复习题 教案.doc

  • 资源ID:36058       资源大小:86.50KB        全文页数:5页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:20金币 【人民币2元】
快捷注册下载 游客一键下载
会员登录下载
三方登录下载: 微信开放平台登录
下载资源需要20金币 【人民币2元】
邮箱/手机:
温馨提示:
支付成功后,系统会自动生成账号(用户名和密码都是您填写的邮箱或者手机号),方便下次登录下载和查询订单;
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,下载更多资源
 
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

北师大版八年级上册数学第一章《勾股定理》复习题 教案.doc

勾股定理 -西街中学 李星鑫教学内容勾股定理的应用-最值问题教学目标1、复习勾股定理相关知识。2、经历应用勾股定理解决实际问题的过程,从实际问题里面抽象出数学模型,培养学生实际操作能力。3、由浅入深,逐步渗透数学的转化思想,用将军饮马模型和勾股定理解决实际问题的最值问题。重点利用勾股定理解决实际问题中的最值。难点根据实际问题构造几何图形。课时安排1课时教学方法师生合作、分组讨论教学过程问题与情境设计意图备注一、 复习回顾1.复习勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。2.知识巩固:在RtABC中,C=90.(1)如果a=5,b=12,则c=________(2)如果a=6,c=10,则b=________(3)如果a=4 ,b=5,则c=________二、解决问题:师:从曹冲称象的故事,引入本节课的内容。从故事中发现,生活中很多不能解决的问题可以通过转化为能解决的问题中来,那么生活中还有很多实际问题可以转化成数学问题来加以解决吗?探究1:如图,校园内有两棵树相距12米,一棵树高3米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?将实际问题转化为数学问题,并通过构造直角三角形解决相关问题,学生独学,并展示解答过程,师生共同纠正学生书写规范。探究2:如图1,两个村子A、B在一条河的同侧,现要在河边l上建造一座蓄水池P,铺设水管向A、B两村庄送水,要使铺设的水管最短。(1)请你确定建造蓄水池P点的位置.(2)如图2,若A、B两村到河边的距离分别为AC=1km,BD=3km,CD=3km,请求出铺设的水管最短是多少km?学生首先独立思考,再组内互助。学生板演其完整解答过程。师生共同纠错订正。既然,平面图形可以转化为数学问题来解决,我们一起研究立体图形可以吗?探究3:如图,透明的圆柱形容器的高为5cm,底面周长为16cm,在容器的外壁离容器底部1cm的B点处有一饭粒,此时,一只蚂蚁正好在容器外壁,且离容器上沿2cm的点A处,请问蚂蚁吃到饭粒需要爬行的最短路径是多少?学生独立思考后,小组合作探究,利用圆柱体模型,小组内学生全员参与,实际操作,让立体图形的侧面转化成平面图形加以解决。个人展示,小组展示,教师投影其完整解答过程。探究3变式:其他条件不变,若饭粒B点在容器的内壁呢?小组内充分交流讨论,师参与指导,学生实际动手操作立体图形的展开图,将立体图形转化成平面图形并转化成将军饮马问题,最后以后建模构造直角三角形解决问题。小组展示其讨论结果,并板演构图过程。师展示其完整解题步骤。归纳小结:1.一个定理:勾股定理;2.两个几何模型:_直角三角形,将军饮马模型;3.两种思想:转化思想,建模思想;课后作业:如图,C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的值。(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)(3)中的规律和结论,请构图求出代数式的最小值。复习勾股定理定义,明确勾股定理的运用条件,为后面建模做理论准备勾股定理的直接运用,为后面问题的探究做实际准备从经典故事出发,让学生从中初步体会转化思想的运用,提升学生学习的积极性。从简单的实际问题入手,让学生领会建模在解决实际问题的作用。学生独学,师注意学生图形的构造,点拨其书写规范。师:从现实故事引出将军饮马问题,学生独立思考,构图解决最短路径的最值问题。学生板演其作图过程,教师讲评。将军饮马最值证明学生不作要求,由教师讲评其证明过程。深入研究该问题,添加数据之后,将最值问题与勾股定理相结合,构造最短路径,并构造直角三角形是难点。从平面图形到立体图形的提升,引发学生思考。从平面图形到立体图形的提升,需要学生进一步领会到将立体图形转化成平面图形来解决的转化思想。小组合作探究,将圆柱体侧面展开,将问题形象化,并培养学生实际动手操作能力。将探究3再次深化,将立体图形转化成平面图形,并继续转化成将军饮马问题,并构造直角三角形解决问题。培养学生坚韧的探索精神,并再次深刻领悟转化思想解决实际问题的作用。小组思考总结通过本节课的学习,运用勾股定理和求最值等方法完成作业。转化思想和数形结合思想的渗透

注意事项

本文(北师大版八年级上册数学第一章《勾股定理》复习题 教案.doc)为本站会员(叶红鱼)主动上传,叮当云教育仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知叮当云教育(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




经营许可证编号:鲁ICP备09030270号-2   鲁公网安备 37011602000151号 copyright@ 2019-2022

网站大部分作品源于会员上传,除本网站整理编辑的作品外,版权归上传者所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

1
收起
展开