欢迎来到叮当云教育! | 帮助中心 教学备课就来叮当文库!

叮当云教育

换一换
首页 叮当云教育 > 资源分类 > PPTX文档下载
 

湘教版初中数学九年级下册第1章二次函数1.3不共线三点确定二次函数的表达式教学课件新版湘教.pptx

  • 资源ID:27721       资源大小:365.06KB        全文页数:17页
  • 资源格式: PPTX        下载权限:游客/注册会员/VIP会员    下载费用:20金币 【人民币2元】
快捷注册下载 游客一键下载
会员登录下载
三方登录下载: 微信开放平台登录
下载资源需要20金币 【人民币2元】
邮箱/手机:
温馨提示:
支付成功后,系统会自动生成账号(用户名和密码都是您填写的邮箱或者手机号),方便下次登录下载和查询订单;
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,下载更多资源
 
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

湘教版初中数学九年级下册第1章二次函数1.3不共线三点确定二次函数的表达式教学课件新版湘教.pptx

教学课件数学九年级下册湘教版第1章二次函数1.3不共线三点确定二次函数的表达式(1)y=kx+b(k0)系数k待定确定一个方程解一元一次方程系数kb待定两个方程解二元一次方程组1.什么是待定系数法?怎样用待定系数法确定函数解析式?2、二次函数的解析式怎样?要确定二次函数表达式需待定的系数是哪些?y=ax2+bx+c(a0)解:设二次函数表达式是:y=ax2+bx+c例1、已知一个二次函数的图象过点(0,2)、(1,0)、(-2,3)三点,求这个函数的表达式?把点(0,2)、(1,0)、(-2,3)代入表达式,得:y=-x2-x+2已知三点求二次函数的解析式。1.设y=ax2+bx+c2.代(三点)3.列(三元一次方程组)4.解5.写(回代,写成一般形式)(消元)解:设y=a(x1)2-3例2、已知抛物线的顶点为(-1-3),与x轴交点为(0-5),求抛物线的解析式?y=-2(x1)2-3,即y=-2x2-4x-5y=-2(x2+2x+1)-3又抛物线与x轴交点为(0,-5)a-3=-5,得a=-2已知抛物线的顶点求表达式。“设”时,不设一般式,而设为“y=a(x-h)2+k”的形式(顶点式)。再把另一点代入,得一元一次方程。(1)已知抛物线y=x2+4x+3它的开口向,对称轴是直线,顶点坐标为,图象与x轴的交点为,与y轴的交点为.上x=-2(-2,-1)(-30),(-10)(0,3)(2)二次函数y=3(x+1)2+4的顶点坐标为。(-1,4)(3)顶点为(0,0)且过点(1,-3)的抛物线的解析式为.y=-3x2(4)抛物线y=-x2-2x+m,若其顶点在x轴上,则m=.-1(5)写出一个图象经过原点的二次函数的表达式.y=x2y=-x2+3x1、填空巩固练习4、已知抛物线与x轴交于点M(-10)、(20),且经过点(12),求抛物线解析式3、当自变量x=0时,函数值y=-2,当自变量x=-1时,函数值y=-1,当自变量x=1时,函数值y=1求当自变量x=2时,函数值y是多少?y=2x2+x-22、二次函数的图象过点(-10)(20)(-35)求这个函数的表达式?5、已知抛物线y=ax2+bx+c的顶点坐标为(2,1),且这条抛物线与x轴的一个交点坐标是(3,0),求抛物线的表达式。设一般式设一般式求出表达式,再求函数值。实际就是已知三点,求函数表达式。设顶点式,求解。6、某抛物线是将抛物线y=ax2向右平移一个单位长度,再向上平移一个单位长度得到的,且抛物线过点(3-3),求该抛物线的表达式。顶点坐标(1,1)设y=a(x-1)2+17、已知抛物线对称轴为x=2,且经过点(1,4)和(5,0),求该二次函数解析式。8、抛物线的图象经过(2,0)与(6,0)两点,其顶点的纵坐标是2,求它的函数关系式顶点坐标为(4,2)由顶点式可求得设y=ax2+bx+c设y=a(x-2)2+k今天我们学到了什么?1、求二次函数解析式的一般方法:.已知图象上三点坐标,通常选择一般式。.已知图象的顶点坐标(对称轴或最值)通常选择顶点式。y=ax2+bx+c(a0)三个系数待定三个方程解三元一次方程组2、求二次函数解析式的常用思想:转化思想无论采用哪一种表达式求解,最后结果都化为一般形式。解方程或方程组课堂小结1.3不共线三点确定二次函数的表达式(2)1、求二次函数解析式的一般方法:.已知图象上三点坐标,通常选择一般式。.已知图象的顶点坐标(对称轴或最值)通常选择顶点式。y=ax2+bx+c(a0)三个系数待定三个方程解三元一次方程组2、求二次函数解析式的常用思想:转化思想无论采用哪一种表达式求解,最后结果都化为一般形式。解方程或方程组3、求二次函数解析式的两种形式:一般式:y=ax2+bx+c顶点式:y=a(x-h)2+k例1、已知抛物线与x轴交于点A(-20)B(10),且经过点C(28),求该二次函数解析式。解:设二次函数解析式为y=ax2+bx+c,则y=2x2+2x-4想一想:还有更快更好的解法吗?由二次函数y=ax2+bx+c的图象经过点(-20)和(1,0),设x1=-2,x2=1,将x1、x2分别代入二次函数解析式中可得y=0,x1、x2也就是一元二次方程ax2+bx+c=0的根,方程可写成a(x-x1)(x-x2)=0形式。二次函数的解析式:y=a(x-x1)(x-x2)(a0),我们把这种解析式称为“交点式”。于是,二次函数的解析式也可得到以下这种形式:小结:二次函数的表达式有几种形式?已知抛物线与x轴交于点A(-2,0),B(1,0),且经过点C(2,8),求该二次函数解析式。解法二:设函数解析式为y=a(x+2)(x-1),又抛物线经过点C(28),则把点C(28)代入可得,8=a(2+2)(2-1),解得a=2故解析式为y=2(x+2)(x-1),即y=2x2+2x-4例2已知二次函数图象经过点(1,4)、(-1,0)和(3,0)三点,求二次函数的表达式。(交点式)二次函数图象经过点(3,0)、(-1,0)设二次函数表达式为:y=a(x-3)(x+1)函数图象过点(1,4)4=a(1-3)(1+1)得a=-1函数的表达式为:y=-(x+1)(x-3)=-x2+2x+3知道抛物线与x轴的两个交点的坐标,用交点式比较简便。(一般式)设二次函数解析式为y=ax2+bx+c二次函数图象过点(14)(-10)和(30),则得:函数的解析式为y=-x2+2x+3抛物线与x轴相交两点(-10)和(30),点(1,4)为抛物线的顶点可设二次函数解析式为y=a(x-1)2+4(顶点式)抛物线过点(-1,0)0=a(-1-1)2+4得,a=-1函数的解析式为y=-(x-1)2+4=-x2+2x+34、已知抛物线与x轴两交点横坐标为1,3且图像过(0,-3),求出对应的二次函数解析式。y=-x2+4x-35、已知二次函数yax2bxc的图象过A(0,5),B(5,0)两点,它的对称轴为直线x2,求这个二次函数的解析式?y=x2-4x-51、求经过三点A(-2,-3),B(1,0),C(2,5)的二次函数的解析式.2、已知抛物线的顶点为D(-1,-4),又经过点C(2,5),求其解析式。3、已知抛物线与x轴的两个交点为A(-3,0)、B(1,0),又经过点C(2,5),求其解析式。6、抛物线与x轴的一个交点坐标是(-1,0),且当x=1时,函数有最大值为4,求此函数解析式。课堂练习7、已知一个二次函数的图象经过点(4,-3),并且当x=3时有最大值4,试确定这个二次函数的解析式。8、已知二次函数的对称轴是直线x=1,图像上最低点P的纵坐标为-8,图像还过点(-2,10),求此函数的表达式。顶点坐标(1,-8)设y=a(x-1)2-89、已知二次函数的图象与x轴两交点间的距离为4,且当x=1时,函数有最小值-4,求此表达式。顶点坐标(1,-4)设y=a(x-1)2-410、有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式求二次函数解析式的一般方法:已知图象上三点或三对的对应值,通常选择一般式y=ax2+bx+c已知图象的顶点坐标、对称轴和最值通常选择顶点式y=a(x-h)2+k已知图象与x轴的两个交点的横x1、x2,通常选择交点式(两根式)y=a(x-x1)(x-x2)。确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式。课堂小结

注意事项

本文(湘教版初中数学九年级下册第1章二次函数1.3不共线三点确定二次函数的表达式教学课件新版湘教.pptx)为本站会员(实验中学朱老师)主动上传,叮当云教育仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知叮当云教育(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




经营许可证编号:鲁ICP备09030270号-2   鲁公网安备 37011602000151号 copyright@ 2019-2022

网站大部分作品源于会员上传,除本网站整理编辑的作品外,版权归上传者所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

1
收起
展开